US009256455B2

a2z United States Patent (10) Patent No.: US 9,256,455 B2
Tsirkin et al. 45) Date of Patent: Feb. 9, 2016
(54) DELIVERY OF EVENTS FROM A VIRTUAL 8,510,756 B1* 82013 Koryakinetal. 719/318
MACHINE TO HOST CPU USING MEMORY 2003/0126186 Al* 7/2003 Rodgers G06F7%3/(1)82
MONITORING INSTRUCTIONS 2004/0030873 Al* 2/2004 Parketal. ... 712/245
. 2006/0200616 Al* 9/2006 Maliszewski GOGF 9/45533
(71) Applicant: Red Hat Israel, Ltd., Raanana (IL) 711/6
2009/0172284 Al* 7/2009 Offenc.c...... GOG6F 12/084
(72) Inventors: Michael Tsirkin, Raanana (IL); Avi 711/125
Kivity, Raanana (IL); Dor Laor 2010/0115513 AL* 52010 Moriki et al. .occcococrreren 718/1
R ’ 0. ’ ’ 2010/0199277 Al* 82010 Galaletal.ccceeeevneeen. 718/1
aanana (IL) 2011/0161541 A1* 6/2011 Madukkarumuku-
.................... GOG6F 9/4812
(73) Assignee: Red Hat Isreal, Litd., Raanana (IL) A 710/260
2012/0131575 Al* 52012 Yehudaetal. 718/1
(*) Notice: Subject to any disclaimer, the term of this 2014/0149979 Al1* 5/2014 Tsirkinetal. ...ccccccovvnnes 718/1
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 285 days. Y
(21) Appl. No.: 13/681,738 Primary Examiner — Emerson Puente
. Assistant Examiner — Willy W Huaracha
(22) Filed: Nov. 20, 2012 (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
(65) Prior Publication Data
US 2014/0143771 A1~ May 22, 2014 (57) ABSTRACT
(51) Int.Cl A method and system for managing a virtual computing sys-
G0;$F 9 /455 (2006.01) tem including a virtual machine (VM) configured to send an
(52) US.Cl ’ event to a host CPU executing a memory monitoring instruc-
CPC ‘G06F 9/45558 (2013.01): GOGF 2009/45587 tion. The virtual machine is configured to receive from a
- TR (2013.01) hypervisor a notification identifying an address range write-
5% Field of Classification S h ’ able by a virtual central processing unit (VCPU) associated
(58) CII(: c of L1assl cag((;gp ;7;;5 58 GOGE 2009/45587 with the virtual machine to send an event to a host central
USP C """"""""" ’ 181 711/6 processing unit (CPU). The virtual machine is further config-
S 1 """ ﬁlf """"""" 1 """"""" h hi ’ ured to receive an instruction to write to the identified address
ee application file for complete search history. range for sending an event to the host CPU. The VCPU of'the
(56) References Cited virtual machine may then write data identifying an event for

U.S. PATENT DOCUMENTS

8,239,610 B2 *
8,473,946 B2 *

8/2012 vanRieletal. ..o 711/6
6/2013 Malyugin etal. 718/1

execution by the host CPU to the identified address range,
without causing an exit to the hypervisor.

18 Claims, 4 Drawing Sheets

COMPUTING SYSTEM 100

VIRTUAL MACHINE 130

HOST 0S 120

HYPERVISOR 125

HOST HARDWARE 150

GUEST 140

EVENT S8OURCE

MEMORY
INSTRUCTION
MANAGER 128

HOSTCPU 170

MANAGER 145

MEMORY 180

DESIGNATED

VIRTUAL CPU
(VCPU) 135

MEMORY
RANGE 185

U.S. Patent Feb. 9, 2016 Sheet 1 of 4 US 9,256,455 B2

FIGURE 1

COMPUTING SYSTEM 10

VIRTUAL MACHINE 130 HOST OS 120 HOST HARDWARE 150
HYPERVISOR 125
GUEST 140
MEMORY HOST CPU 170
INSTRUCTION
MANAGER 128
EVENT SOURCE
MANAGER 145
MEMORY 180
DESIGNATED
MEMORY
VIRTUAL CPU RANGE 185
(VCPU) 135

U.S. Patent

Feb. 9, 2016 Sheet 2 of 4

FIGURE 2

Receive a notification from a hypervisor
designating a memory range that is
writeable by a VCPU in order to wake up a
host CPU for performance of an event

'

220

Maintain an association between the
designated memory range and the host
CPU

2301

Receive an instruction from the hypervisor
to write to the designated memory range

l

240 N

Instruct the VCPU to write to the designated
memory range in order to send an event to
the associated host CPU

US 9,256,455 B2

200

U.S. Patent Feb. 9, 2016 Sheet 3 of 4 US 9,256,455 B2

FIGURE 3

300

310
\ |dentify a designated memory range that
may be written to in order to wake up a host

CPU for performance of an event

Maintain an association between the
designated memory range and the host
CPU

320

Notify a virtual machine (VM) of a

330 designated memory range that is writeable

by a VCPU associated with the VM in order

to wake up a host CPU for performance of
an event

U.S. Patent Feb. 9, 2016 Sheet 4 of 4 US 9,256,455 B2

402 A0
PROCESSOR
< > | > VIDEO DISPLAY
EVENT SOURCE
MANAGER 145
408
L~ 412
MEMORY
INSTRUCTION
MANAGER 128 <«——| ALPHA-NUMERIC INPUT DEVICE
404
MAIN MEMORY
414
e m——
EVENT SOURCE ra
MANAGER 145
{e——»| CURSOR CONTROL DEVICE
MEMORY
INSTRUCTION 178 416
MANAGER 128 2 4
DRIVE UNIT
408 COMPUTER- 42k
READABLE MEDIUM T~
STATIC MEMORY >
EVENT SOURCE
MANAGER 145
= 422 D ———
NETWORK INTERFACE MEMORY
DEVICE ¢ > INSTRUCTION
MANAGER 128

L~ 420

-«—» SIGNAL GENERATION DEVICE

“ FIGURE 4

US 9,256,455 B2

1
DELIVERY OF EVENTS FROM A VIRTUAL
MACHINE TO HOST CPU USING MEMORY
MONITORING INSTRUCTIONS

TECHNICAL FIELD

Embodiments ofthe present disclosure relate to a computer
system, and more specifically, to managing the delivery of an
event from a virtual machine to a host central processing unit
(CPU) based on memory monitoring instructions in a virtu-
alized computing system.

BACKGROUND

In order to preserve power resources and lower overhead
usage, conventional physical CPUs utilize memory monitor-
ing instructions (e.g., monitor and mwait instructions) desig-
nating a range of memory that allow the physical CPU to stop
instruction execution. The physical CPU executing the moni-
toring instruction is blocked from further execution and
enters a wait state until there is a change to the designated
memory by another physical CPU or an inter-processor inter-
rupt is received.

However, in virtualized computing systems, if a virtual
machine attempts to write to the designated memory block in
order to wake-up the physical CPU executing memory moni-
toring instructions, a virtual machine exit is performed which
causes a transition of control from the virtual machine to the
software layer providing the virtualization, commonly
referred to as a hypervisor (also known as a virtual machine
monitor (VMM)).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example computer system
configured to allow a virtual machine to deliver an event to a
host CPU without a virtual machine exit, according to an
embodiment of the present disclosure;

FIG. 2 is a flow diagram of an example method executed by
a virtual machine for managing the delivery of an event from
the virtual machine to a host CPU without a virtual machine
exit, according to an embodiment of the present disclosure;

FIG. 3 is a flow diagram of an example method executed by
a hypervisor for managing the delivery of an event from a
virtual machine to a host CPU without a virtual machine exit,
according to an embodiment of the present disclosure; and

FIG. 4 illustrates a diagrammatic representation of an
example event delivery management system, according to an
embodiment of the present disclosure.

DETAILED DESCRIPTION

Methods and systems for managing a virtual computing
system including a virtual machine (VM) configured to send
an event to a host CPU executing a memory monitoring
instruction. The host CPU executes the memory monitoring
instruction (e.g., a wait instruction) on a designated memory
range. The virtual computing system includes a hypervisor
configured to notify a virtual CPU (VCPU) of the VM (also
referred to as the “source VM”) that the source VM may write
to the designated memory address (e.g., modify the desig-
nated memory) in order to send a request for the performance
of'an event or action (e.g., the sending of a network packet) to
the host CPU. The VCPU of the source VM may send an event
to the host CPU by writing data to the designated memory

10

15

20

25

30

35

40

45

55

60

65

2

range, without causing a VM exit. In an example, after receiv-
ing the event, the host CPU may retrieve event information
from the source VM.

In an example, the guest includes an event source manager
configured to receive notifications from the hypervisor
regarding the designated memory ranges that are writeable by
the VCPU of the source VM to deliver an event. In an
example, the event source manager is further configured to
track the host CPU and the designated memory range in order
to write to the appropriate memory range to notify the host
CPU of the desired event for which the source VM seeks
performance.

Accordingly, an efficient method and system is provided
that enables a virtual machine (e.g., the source VM) to send
events to the host CPU using memory monitoring instruc-
tions, without causing an exit to the hypervisor. The avoid-
ance of an exit to the hypervisor allows for the delivery of
event requests to the host CPU without the trapping of
instructions by the hypervisor and the computational and time
expense associated with a conventional interrupt (e.g., the
computational/time expense associated with jumping to an
interrupt vector).

In the following description, numerous details are set forth.
It will be apparent, however, to one skilled in the art, that the
present disclosure may be practiced without these specific
details. In some instances, well-known structures and devices
are shown in block diagram form, rather than in detail, in
order to avoid obscuring the present disclosure.

FIG. 1 is a block diagram that illustrates an example com-
puting system 100 in which examples of the present disclo-
sure may operate. The computing system 100 hosts a virtual
machine (VM) 130, also referred to as the “source VM”. The
virtual machine 130 runs a guest (e.g., guest 140) that uses a
guest operating system to manage its resources. The virtual
machine 130 may run the same or different guest operating
systems, such as Microsoft Windows®, Linux®, Solaris®,
Mac® OS, etc. The computing system 100 may be a server, a
workstation, a personal computer (PC), a mobile phone, a
palm-sized computing device, a personal digital assistant
(PDA), etc.

Throughout the following description, the term “guest”
refers to the computer readable instructions run on the hyper-
visor that is installed on a disk, loaded into memory, or cur-
rently running. A guest may include one or more of the
following: a firmware copy in memory, an operating system,
additional installed software, a browser, applications running
on the browser, etc. The term “virtual machine” (VM) refers
to part of a host system that is visible to the guest. A virtual
machine may include one or more of the following: memory,
virtual CPU (e.g., VCPU 135), virtual devices (e.g., emulated
NIC or disk), physical devices over which a guest is given
partial or full control, firmware such as Basic Input/Output
System (BIOS), Extensible Firmware Interface (EFI) and
Advanced Configuration and Power Interface (ACPI) which
is provided to the guest, etc.

In one example, the computing system 100 runs a hyper-
visor 125 to virtualize access to the underlying host hardware
150, making the use of the virtual machine 130 transparent to
the guest 140 and the users of the computing system 100. In
one example, the hypervisor 125 may support the virtual
machine 130. In one example, the hypervisor 125 is part of a
host operating system (OS) 120.

In one example, the computing system 100 also includes
hardware components (host hardware) including a host cen-
tral processing unit (CPU) 170. The computing system 100
may also include memory 180, input/output (I/O) devices and
other hardware components (not shown). In one example, the

US 9,256,455 B2

3

host CPU 170 is configured to handle event requests from the
virtual machines 130 in accordance with the method
described in connection with FIG. 2. Example event requests
submitted by a guest 140 include a request to transmit a
packet, a request to perform a disk 1/O operation, a request to
output an image to a display, a request to send data on a serial
port, etc.

In an example, the hypervisor 125 includes a memory
instruction manager 128 configured to notify the VCPU 135
of'the VM 130 of an address range 185 of memory 180 that
may be written to in order to deliver an event to the host CPU
170 (also referred to as a “memory designation notification™).
It is noted that the memory designation notification may be
provided by the hypervisor 125 either priorto or following the
execution of a memory instruction (e.g., a wait instruction) by
the host CPU 170 on the designated memory range 185. In an
example, the memory instruction manager 128 is also con-
figured to notify the source VM 130 that the source VM 130
may write to the designated memory range 185 (e.g., modify
the designated memory range) in order to wake up the host
CPU and deliver an event to the host CPU (also referred to as
an “memory writing notification”). In an example, the noti-
fication provided to the source VM 130 instructs the source
VM 130 that a write to the designated memory range 185 may
be used to wake up the host CPU, without causing an exit to
the hypervisor 125. In an example, after receiving the event,
the host CPU 170 may retrieve event information from the
source VM.

In an example, the guest 140 includes an event source
manager 145 configured to receive the memory designation
notification and the memory writing notification from the
hypervisor 125. In an example, the event source manager 145
is further configured to use the notifications to maintain or
store an association between the host CPU and the designated
memory range in order to identify the appropriate memory
range to write to in order to notify the host CPU 170 of a
requested event.

In an example, the memory instruction manager 128 is
configured to manage the memory range designations and
assignments. In this example, the memory instruction man-
ager 128 may reserve different memory ranges for specific
event sources. For example, a first designated memory range
may be dedicated for use by source VCPUs, a second desig-
nated memory range may be dedicated for use by physical
CPUs, a third designated memory range may be dedicated for
use by one or more devices (e.g., a printer, a display), etc.).

In an example, the memory 180 and/or the designated
memory range 185 may include a portion which is protected
and not writeable by the VCPU 135 of the source VM 130. In
an example, the protected portion may be writeable by
another host CPU (e.g., a second host CPU) in order for the
second host CPU to wake up the host CPU 170 to receive and
perform a requested event.

Advantageously, the delivery of events from the source VM
130 to the host CPU 150 using memory monitoring instruc-
tions, without causing an exit to the hypervisor, results in the
avoidance of the trapping of instructions by the hypervisor
125 and the reduction in the computational and time expenses
associated with the jumping to an interrupt vector associated
with a conventional interrupt of a physical CPU.

FIG. 2 is a flow diagram illustrating one example of a
method 200 for the delivery of an event, by a VCPU of a
source VM, for execution by a host CPU using a memory
monitoring instruction, without causing an exit to a hypervi-
sor managing the source VM. The method 200 may be per-
formed by a computing system 100 of FIG. 1 that may com-
prise hardware (e.g., circuitry, dedicated logic,

10

15

20

25

30

35

40

45

50

55

60

65

4

programmable logic, microcode, etc.), software (e.g., instruc-
tions run on a processing device), or a combination thereof. In
one example, the method 200 is performed by the event
source manager 145 of the source VM 130 of FIG. 1.

In one example, prior to the execution of method 200, a
host CPU (e.g., the host CPU 170 of FIG. 1) executes a
memory monitoring instruction (e.g., a wait instruction) on a
memory range (e.g., the designated memory range 185 of
FIG. 1). In addition, prior to the execution of method 200, a
hypervisor (e.g., hypervisor 125 of FIG. 1) provides a notifi-
cationto a VCPU of a source VM (e.g., VCPU 135 of VM 130
in FIG. 1) identifying an address range that may be written to
by the VCPU in order to deliver an event to a host CPU. It is
noted that the aforementioned setup steps may be performed
in any order, e.g., the memory monitoring instruction may be
executed before the hypervisor provides the notification to the
VCPU, or vice versa.

As shown in FIG. 2, method 200 begins when the source
virtual machine receives a notification from the hypervisor
designating an address range that is writeable by a VCPU of
the source virtual machine in order to wake up the host CPU
for performance of an event, in block 210. In an example, the
designated memory range may include a portion that is pro-
tected and not writeable by the source VM. Optionally, the
protected portion of the designated memory range may be
reserved for use by another host CPU. In an example, the
source VM may instruct the VCPU to write to a portion of the
designated memory range which is dedicated for use by a
VCPU.

Referring to FIG. 2, in block 220, the source VM is con-
figured to maintain an association between the designated
memory range and host CPU to enable the source VM to
manage event delivery and track the manner in which the
memory location associated with a host CPU may be modi-
fied in the virtual mode in order to deliver an event for execu-
tion. In an example, the source VM may store the association
between the designated memory range and the host CPU ina
memory associated with the source VM.

In block 230, the source VM receives a notification or
instruction from the hypervisor to write to the designated
memory range in order to deliver an event to the associated
host CPU. In block 240, the source VM instructs a VCPU to
write to the designated memory range (e.g., modifies the
memory) to wake up the associated host CPU and deliver an
event to the host CPU, without an exit to the hypervisor. In an
example, the data written to the designated memory range
includes information defining the specific event that is to be
executed. In this example, the host CPU reads the data that is
written to the designated memory block to identify what
action the host CPU is being asked to perform. In an example,
in block 230, the modifications to the designated memory
range may be performed by one or more atomic instructions
(e.g., a locked memory instruction).

Advantageously, the method 200 realizes the benefit of
allowing a virtual machine to deliver event requests to a host
CPU using memory monitoring instructions without causing
a VM exit to the hypervisor, thereby reducing the computa-
tional and time overhead associated with the VM exit com-
munication protocol and without a conventional interrupt and
the associated computational/time expense associated with
jumping to an interrupt vector.

FIG. 3 is a flow diagram illustrating one example of a
method 300 for facilitating the delivery of an event by a
source VM to ahost CPU using a memory monitoring instruc-
tion, without causing an exit to a hypervisor managing the
source VM. The method 300 may be performed by a comput-
ing system 100 of FIG. 1 that may comprise hardware (e.g.,

US 9,256,455 B2

5

circuitry, dedicated logic, programmable logic, microcode,
etc.), software (e.g., instructions run on a processing device),
or a combination thereof. In one example, the method 300 is
performed by the memory instruction manager 128 of the
hypervisor 125 of FIG. 1.

In one example, prior to the execution of method 300, a
host CPU (e.g., the host CPU 170 of FIG. 1) executes a
memory monitoring instruction (e.g., a wait instruction) on a
memory range (e.g., the designated memory range 185 of
FIG. 1). In block 310, the hypervisor (e.g., hypervisor 125 of
FIG. 1) identifies an address range that may be written to in
order to deliver an event to a host CPU. In an example, the
hypervisor may perform the designation of the address range
prior to the execution of the memory monitoring instruction
by the host CPU. In block 320, the hypervisor maintains,
tracks and or records the association between the designated
memory range and the host CPU in a memory associated with
the hypervisor. In an example, in managing the designated
memory range, the hypervisor may instruct the virtual
machine to employ different memory ranges for use by dif-
ferent event source types (e.g., a first memory range may be
designated for use by one or more VCPUs, a second memory
range may be designated for use by one or more physical
CPUs, a third memory range may be designated for use by
one or more devices, etc.).

As shown in FIG. 3, in block 330, the hypervisor notifies a
virtual machine (e.g., virtual machine 130 of FIG. 1) of the
designated address range that is writeable by a VCPU of the
virtual machine in order to wake up the host CPU for perfor-
mance of an event, without causing an exit to the hypervisor.
In an example, the designated memory range may include a
portion that is protected and not writeable by the source VM.
Optionally, the protected portion of the designated memory
range may be reserved for use by another host CPU. In an
example, in managing the designated memory range, the
hypervisor may instruct the virtual machine to employ differ-
ent memory ranges for use by different event source types
(e.g., a first memory range may be designated for use by one
or more VCPUs, a second memory range may be designated
for use by one or more physical CPUs, a third memory range
may be designated for use by one or more devices, etc.).

According to the example method 300, the hypervisor may
coordinate the delivery of an event request by a virtual
machine to a host CPU using memory monitoring instruc-
tions, without causing a VM exit to the hypervisor, thereby
reducing the computational and time overhead associated
with the VM exit communication protocol and without a
conventional interrupt and the associated computational/time
expense associated with jumping to an interrupt vector.

FIG. 4 illustrates a diagrammatic representation of a
machine in the example form of a computer system 400
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In some examples, the machine may
be connected (e.g., networked) to other machines in a LAN,
an intranet, an extranet, or the Internet. The machine may
operate in the capacity of a server machine in client-server
network environment. The machine may be a personal com-
puter (PC), a set-top box (STB), a server, a network router,
switch or bridge, or any machine capable of executing a set of
instructions (sequential or otherwise) that specify actions to
be taken by that machine. Further, while only a single
machine is illustrated, the term “machine” shall also be taken
to include any collection of machines that individually or
jointly execute a set (or multiple sets) of instructions to per-
form any one or more of the methodologies discussed herein.

20

40

45

55

6

The example computer system 400 includes a processing
device (processor) 402, a main memory 404 (e.g., read-only
memory (ROM), flash memory, dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM)),
a static memory 406 (e.g., flash memory, static random access
memory (SRAM)), and a data storage device 416, which
communicate with each other via a bus 408.

Processor 402 represents one or more general-purpose pro-
cessing devices such as a microprocessor, central processing
unit, or the like. More particularly, the processor 402 may be
a complex instruction set computing (CISC) microprocessor,
reduced instruction set computing (RISC) microprocessor,
very long instruction word (VLIW) microprocessor, or a pro-
cessor implementing other instruction sets or processors
implementing a combination of instruction sets. The proces-
sor 402 may also be one or more special-purpose processing
devices such as an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), a digital
signal processor (DSP), network processor, or the like. The
event source manager 145 and/or the memory instruction
manager 128 shown in FIG. 1 may be executed by processor
402 configured to perform the operations and steps discussed
herein.

The computer system 400 may further include a network
interface device 422. The computer system 400 also may
include a video display unit 410 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)), an alphanumeric input
device 412 (e.g., a keyboard), a cursor control device 414
(e.g., a mouse), and a signal generation device 420 (e.g., a
speaker).

A drive unit 416 may include a computer-readable medium
424 on which is stored one or more sets of instructions (e.g.,
instructions of the event source manager 145 and/or the
memory instruction manager 128) embodying any one or
more of the methodologies or functions described herein. The
instructions of the event source manager 145 and/or the
memory instruction manager 128 may also reside, com-
pletely or at least partially, within the main memory 404
and/or within the processor 402 during execution thereof by
the computer system 400, the main memory 404 and the
processor 402 also constituting computer-readable media.
The instructions of the event source manager 145 and/or the
memory instruction manager 128 may further be transmitted
or received over a network via the network interface device
422.

While the computer-readable storage medium 424 is
shown in an example to be a single medium, the term “com-
puter-readable storage medium” should be taken to include a
single non-transitory medium or multiple non-transitory
media (e.g., a centralized or distributed database, and/or asso-
ciated caches and servers) that store the one or more sets of
instructions. The term “computer-readable storage medium”
shall also be taken to include any medium that is capable of
storing, encoding or carrying a set of instructions for execu-
tion by the machine and that cause the machine to perform
any one or more of the methodologies of the present disclo-
sure. The term “computer-readable storage medium” shall
accordingly be taken to include, but not be limited to, solid-
state memories, optical media, and magnetic media.

In the above description, numerous details are set forth. It
is apparent, however, to one of ordinary skill in the art having
the benefit of this disclosure, that examples of the disclosure
may be practiced without these specific details. In some
instances, well-known structures and devices are shown in
block diagram form, rather than in detail, in order to avoid
obscuring the description.

US 9,256,455 B2

7

Some portions of the detailed description are presented in
terms of algorithms and symbolic representations of opera-
tions on data bits within a computer memory. These algorith-
mic descriptions and representations are the means used by
those skilled in the data processing arts to most effectively
convey the substance of their work to others skilled in the art.
An algorithm is here, and generally, conceived to be a self-
consistent sequence of steps leading to a desired result. The
steps are those requiring physical manipulations of physical

quantities. Usually, though not necessarily, these quantities 10

take the form of electrical or magnetic signals capable of
being stored, transferred, combined, compared, and other-
wise manipulated. It has proven convenient at times, princi-
pally for reasons of common usage, to refer to these signals as
bits, values, elements, symbols, characters, terms, numbers,
or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “receiving”, “instructing”, “maintaining”, or the like, refer
to the actions and processes of a computer system, or similar
electronic computing device, that manipulates and trans-
forms data represented as physical (e.g., electronic) quanti-
ties within the computer system’s registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage, transmission or display devices.

Examples of the disclosure also relate to an apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but not limited to, any type of
disk including floppy disks, optical disks, CD-ROMs, and
magnetic-optical disks, read-only memories (ROMs), ran-
dom access memories (RAMs), EPROMs, EEPROMs, mag-
netic or optical cards, or any type of media suitable for storing
electronic instructions.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct a more specialized apparatus to per-
form the required method steps. Example structure for a
variety of these systems appears from the description herein.
In addition, the present disclosure is not described with ref-
erence to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the disclosure as
described herein.

It is to be understood that the above description is intended
to be illustrative, and not restrictive. Many other examples
will be apparent to those of skill in the art upon reading and
understanding the above description. The scope of the disclo-
sure should, therefore, be determined with reference to the
appended claims, along with the full scope of equivalents to
which such claims are entitled.

What is claimed is:

1. A method comprising:

executing, by a host central processing unit (CPU), a
memory monitoring instruction to identify an address
range;

20

25

30

40

45

55

65

8

receiving, by a virtual machine executing a guest, from a
hypervisor executable by the host CPU, a notification
identifying the identified address range writeable by a
virtual central processing unit (VCPU) associated with
the virtual machine to send an event to the host CPU;,

receiving, by the virtual machine, an instruction to write to
the identified address range for sending an event to the
host CPU; and

writing, by the VCPU, data identifying an event for execu-
tion by the host CPU to the identified address range,
without causing an exit to the hypervisor.

2. The method of claim 1, wherein the identified address
range comprises a protected portion not writeable by the
VCPU.

3. The method of claim 1, wherein the identified address
range is dedicated for writing to by the VCPU.

4. The method of claim 1, wherein writing to the identified
address range comprises executing an atomic instruction.

5. The method of claim 1, further comprising maintaining,
by the virtual machine, an association between the identified
address range and the host CPU.

6. The method of claim 1, wherein the hypervisor main-
tains an assignment of a plurality of additional address ranges
associated with the host CPU, wherein each of the plurality of
additional address ranges is dedicated for writing to by a
specific source type.

7. A non-transitory computer readable storage medium
comprising instructions that, when executed by a host central
processing unit (CPU), cause the host CPU to:

execute a memory monitoring instruction to identify an
address range;

receive, by a virtual machine executing a guest from a
hypervisor executable by the host CPU, a notification
identifying the identified address range writeable by a
virtual central processing unit (VCPU) associated with
the virtual machine to send an event to the host CPU;,

receive, by the virtual machine, an instruction to write to
the identified address range for sending an event to the
host CPU; and

write, by the VCPU, data identifying an event for execution
by the host CPU to the identified address range, without
causing an exit to the hypervisor.

8. The non-transitory computer readable storage medium
of claim 7, wherein the identified address range comprises a
protected portion not writeable by the VCPU.

9. The non-transitory computer readable storage medium
of claim 7, wherein the identified address range is dedicated
for writing to by the VCPU.

10. The non-transitory computer readable storage medium
of claim 7, wherein the data identifying the event for execu-
tion by the host CPU is written to the identified address range
by an atomic instruction.

11. The non-transitory computer readable storage medium
of claim 7, the host CPU to maintain an association between
the identified address range and the host CPU.

12. The non-transitory computer readable storage medium
of claim 7, wherein the hypervisor maintains an assignment
of'a plurality of additional address ranges associated with the
host CPU, wherein each of the plurality of additional address
ranges is dedicated for writing to by a specific source type.

13. A computer system comprising:

a memory; and

ahost central processing unit (CPU) operatively coupled to
the memory, the host CPU to:

execute a memory monitoring instruction to identify an
address range;

US 9,256,455 B2

9

receive, by a virtual machine, from a hypervisor executable
by the host CPU, a notification identifying the identified
address range writeable by a virtual central processing
unit (VCPU) associated with the virtual machine to send
an event to the host CPU;

receive an instruction to write to the identified address

range for sending an event to the host CPU; and

write, by the VCPU of'the virtual machine, data identitying

an event for execution by the host CPU to the identified
address range, without causing an exit to the hypervisor.

14. The computer system of claim 13 wherein the identified
address range comprises a protected portion not writeable by
the VCPU.

15. The computer system of claim 13, wherein the identi-
fied address range is dedicated for writing to by the VCPU.

16. The computer system of claim 13, the processing
device to write to the identified address range by executing an
atomic instruction.

17. The computer system of claim 13, wherein the virtual
machine maintains an association between the identified
address range and the host CPU.

18. The computer system of claim 13, wherein the hyper-
visor maintains an assignment of a plurality of additional
address ranges associated with the host CPU, wherein each of
the plurality of additional address ranges is dedicated for
writing to by a specific source type.

#* #* #* #* #*

20

25

10

